
UNIT –I

FUNDAMENTALS OF SOFTWARE QUALITY ASSURANCE

Software Quality Assurance

“What is not tracked is not done”

In software, so many things need to be done management cannot track all of them. So, some

organization needs to do the tracking. That is the role of software quality assurance (SQA

SQA is designed to insure that officially established pro- cesses are being implemented and

followed. Specifically, SQO insures that: •An appropriate development methodology is in

place; •The projects use standards and procedures in their work; •Independent reviews and

audits are conducted; •Documentation is produced to support maintenance and enhancement;

•Documentation is produced during development and not after development; •Mechanisms

are in place and used to control changes; •Testing emphasizes all the high-risk product areas;

•Each software task is satisfactorily completed before the next one begins; •Deviations from

standards and procedures are exposed ASAP;

•The project is audible by external professionals; •The quality control work is itself

performed against estab- lished standards; •The SQA plan and the software development plan

are compatible.

The goals of SQA are:

•To improve software quality by approximately monitoring both the software and the

development process that pro- duces it; •To insure full compliance with the established

standards and procedures for the software and the software pro- cess; •To insure that

inadequacies in the product, the process, or the standards are brought to managements’

attention so these inadequacies can be fixed.

THE ROLE OF SQA The people responsible for the software projects are the only ones

who can be responsible for quality. The role of SQA is to monitor the way these groups

perform their responsibilities. In doing this, there are several pitfalls: •It is a mistake to

assume that SQA staff can do anything about quality; •The existence of SQA does not insure

that standards and procedures will be followed; •Unless management demonstrates its support

for SQA by following their recommendations, SQA will be ineffec- tive; •Unless line

management requires that SQA try to resolve their issues with project management before

escalation, SQA and development will not work together effectively.

All SQA can do is alert management to deviations from established standards and practices.

Management must then insist that the quality problems be fixed before the software is

shipped; otherwise, SQA becomes an expensive bureau- cratic exercise.

SQA RESPONSIBILITIES SQA can be effective when it reports through an independent

management chain, when it is properly staffed, and when it sees its role as supporting the

development and maintenance personnel in improving product quality. Then, SQA should be

given the following responsibilities: •Review all development and quality plans for complete-

ness; •Participate as inspection moderators in design and code inspections; •Review all test

plans for adherence to standards; •Review a significant sample of all test results to deter-

mine adherence to plans; •Periodically audit SCM performance to determine adher- ence to

standards;

•Participate in all project quarterly and phase reviews and register non-concurrence if

appropriate standards and procedures have not be reasonably met.

SQA FUNCTIONS Before establishing an SQA function, the basic organizational

framework should include the following: •Quality assurance practices - Adequate

development tools, techniques, methods, and standards are defined and available for Quality

Assurance review; •Software project planning evaluation - If not defined at the outset, they

will not be implemented; •Requirements evaluation - Initial requirements must be reviewed

for conformance to quality standards; •Evaluation of the design process- •Evaluation of

coding practices -

•Evaluation of the software integration and test process - •In-process evaluation of the

management and project control process -

SQA REPORTING SQA reporting should not be under the software development manager.

SQA should report to a high enough management level to have some chance of influencing

priorities and obtaining enough resources to fix key problems. However, lower-level

reporting normally results in better working rela- tionships with developers, while the ability

to influence priori- ties is reduced.

Some general guidelines are: •SQA should not report to the project manager; •SQA should

report somewhere within the local company or plant organization; •There should be no more

than one management position between SQA and the senior location manager; •SQA should

always have a “dotted-line” relationship to a senior corporate executive; •SQA should report

to someone having a vested interest in software quality, like the staff head responsible for

field services.

SQA CONSIDERATIONS •SQA organizations are rarely staffed with sufficiently

experienced or knowledgable people because such peo- ple usually prefer

development/design work, and man- agement often wants them in the latter, too; •The SQA

management team often is not capable of negotiating with development. This depends on the

cali- ber of the SQA team; •Senior management often backs development over SQA on a

very large percentage of issues. Development then ignores he SQA issues, and SQA

degenerates into a series of low-level, useless debates.

•Many SQA organizations operate without suitably docu- mented and approved development

standards and pro- cedures; without such standards, they do not have a sound basis for

judging developmental work, and every issue becomes a matter of opinion. Development also

wins such generalized debates when schedules are tight. •Software development groups

rarely produce verifiable quality plans. SQA is then trapped into arguments over specific

defects rather than overall quality indicators. SQA may win the battle but lose the war.

SQA PEOPLE Getting good people into SQA can be a problem. Possible solutions include

putting new hires there (but must also have experienced people there, too), rotating personnel

through SQA (which may result in only poor developers being assigned there), and requiring

that all new development man- agers be promoted from SQA after spending at least 6 months

there (which can be very effective).

INDEPENDENT VERIFICATION AND VALIDATION In DoD contracts, independent

verification and validation (IV&V) is often specified. The IV&V organization provides an

independent assessment of the quality of the software. How- ever, do not confuse SQA and

IV&V. SQA works for the developer; IV&V works for the customer.

Software Configuration Management

The most frustrating software problems are often caused by poor software configuration

management (SCM). For exam- ple, a bug fixed at one time reappears; a developed and

tested feature is missing; or a fully tested program suddenly doesn’t work.

SCM helps to reduce these problems by coordinating the work products of many different

people who work on a com- mon project. With such control, can get problems such as;

•Simultaneous update - When two or more programmers work separately on the same

program, the last one to make changes can easily destroy the other work. •Shared code -

Often, when a bug is fixed in code shared by several programmers, some of them are not

notified

•Common code - In large systems, when common pro- gram functions are modified, all the

users need to know. •Versions - Most large programs are developed in evolu- tionary

releases. With one release in customer use, one in test, and a third in development, bug fixes

must be propagated between them.

These problems stem from a lack of control. The key is to have a control system that answers

the following questions: •What is my current software configuration? •What is its status?

•How do I control changes to my configuration? •How do I inform everyone else of my

changes? •What changes have been made to my software? •Do anyone else’s changes affect

my software?

SOFTWARE PRODUCT NOMENCLATURE •System - The package of all the software that

meet’s the user’s requirements. •Subsystem - Comprise large systems, such as communi-

cations, display, and processing; •Product - Components of subsystems, such as control

program, compliers, and utilities of an operating system. •Component - Components of a

product, such as supervi- sor and scheduler of a control program. •Module - Lowest level of

components is modules. Typi- cally implement individual functions that are relatively small

and self-contained, such as queue management and interrupt dispatcher.

During implementation, two things are happening. First, the modules are being developed,

enhanced, tested, and repaired from detailed design and implementation through system test.

Second, the modules are being assembled into components, products, subsystems, and

systems. During this building process, the modules are consistently being changed to add

functions or repair problems. This process is supported by a hierarchy of tests: •Unit test - A

separate test for each individual module; •Integration test - As the modules are integrated into

com- ponents, products, subsystems, and systems, their inter- faces and interdependencies are

tested to insure they are properly designed and implemented. •Function test - When

integration results in a functionally operable build, it is tested in a component test, product

test, subsystem test, and finally in a system test;

•Regression test - At each integration test (here called a spin), a new product is produced.

This is the first tested to insure that it hasn’t regressed, or lost functions present in a previous

build.

Once an initial product is stabilized, a first baseline is estab- lished. Each baseline is a

permanent database, together with all the changes that produced it. Only tested code and

approved changes are in the baseline, which is fully pro- tected.

The key SCM tasks are: Configuration control Change management Revisions Deltas

Conditional code.

CONFIGURATION CONTROL The task of configuration control revolves around one

official copy of the code. The simplest way to protect every system revision is to keep a

separate official copy of each version.

However, when two or more groups work on separate copies of the same or similar versions

of common code, they often make different changes to correct the same problem. A good rule

of thumb is that no two separate copies of a program can be kept identical. If separate copies

exist, they must be assumed to differ; even if they were the same, they will soon diverge.

Only keep one official copy of any code that is used by sev- eral groups. Working copies may

occasionally be used, but a common library must be the official source for all this com- mon

code, and only officially approved changes can be per- mitted into this library.

REVISIONS Keep track of every change to every module and test case. There is one latest

official version and every prior version is identified and retained; these obsolete copies can be

used to trace problems.

A numbering system must separately identify each test, mod- ule, component, product, and

system.

VERSIONS Often, several different functions can be implemented by the same module with

only modest coding differences. For exam- ple, different memory management code may be

needed to handle expansion beyond the standard 512K. Then, a differ- ent use a standard

management module below 512K, and one using a mode switch beyond 512K.

Since these are different programs, they have different desig- nations, such as MEM and

MEML. Each would have its own sequence of revisions and revision numbering schemes.

DELTAS Versions solves the problem of different functional needs for the same module but

introduces multiple copies of the same code. The reason is that most of the code in the two

modules would be identical. One, however, may have an additional routine to handle memory

limits testing and mode switching (in the case of the 512K memory limits problem). Since

they are stored as separate modules, however, there is no way to make sure all changes made

to one are incorporated into the other.

One way to handle this is with deltas. This involves storing the base module (MEM) with

those changes required to make it into MEML When maintenance is required on MEM, these

changes can be made directly, so long as they do not interfere with the delta code. Changes to

MEML are made to the delta, with MEM left alone.

There are disadvantages to this system. It is possible to have versions of both versions, so

tracking get extremely compli- cated. If an element is lost or corrupted in a chain of deltas, it

may be difficult to resurrect the entire chain. If deltas live a long time, they could grow into

large blocks of code.

An answer is to use deltas only for temporary variations; then incorporate them into the

baseline. However, the deltas have to be incorporated separately.

CONDITIONAL CODE Another way of handling slight variations between modules is to use

some form of conditional program construction. For example, a billing program might use

different functions depending on the need for a state sales tax. The source pro- gram would

contain various tax versions, but none would be included in the final system unless called for

at system instal- lation.

The use of conditional code simplifies code control because there is only one official copy of

each module. The number of version combinations is also minimized.

There are disadvantages, however. The most important is that end users must specify all

parameters and then perform a special and perhaps complex installation process. Also, thew

system generation process becomes more complex with system growth.

BASELINES The baseline is the foundation for SCM. It provides the official standard on

which subsequent work is based and to which only authorized changes are made. After an

initial baseline is established and frozen, every subsequent change is recorded as a delta until

the next baseline is set.

While a baseline should be established early in a project, establishing one too early will

impose unnecessary proce- dures and slow the programmers’ work. As long as program-

mers can work on individual modules with little interaction, a code baseline is not needed. As

soon as integration begins, formal control is needed.

BASELINE SCOPE. Items to be included in the implementation phase are: •The current level

of each module, including source and object code •he current level of each test case,

including source and object code •The current level of each assemble, compiler, editor, or

other tool used •The current level of any special test or operational data •The current level of

all macros, libraries, and files •The current level of any installation or operating proce- dures

•The current level of operating systems and hardware, if pertinent

Retain every change, no matter how minor it seems.

BASELINE CONTROL Controlled flexibility is accomplished by providing the pro-

grammers with private working copies of any part of the base- line. They can try new

changes, conduct tests, etc. without disturbing anyone else. When ready, new changes can be

incorporated into the baseline, after assuring the changes are compatible and no new code

causes regressions.

Every proposed change must be tested against a trial version of the new baseline to make sure

it does not invalidate any other changes

CONFIGURATION MANAGEMENT RECORDS Every change proposal is documented

and authorized before being made. The documentation includes the reason for the change, the

potential cost in time, the person responsible for the change, and the products affected.

Detailed records are especially crucial when hardware and software changes are made

simultaneously. Just because the programs run doesn’t mean they will continue to run if

hardware changes.

Should always have problem reports, which document every problem and the precise

conditions that caused it.

The expect list details every function and planned feature for every component in each new

baseline.

CONFIGURATION MANAGEMENT RESPONSIBILITIES The configuration manager is

the central control point for sys- tem changes and has the following responsibilities:

•Develop, document, and distribute the SCM procedures; •Establish the system baseline,

including backup provi- sions; •Insure that no unauthorized changes are made to the baseline;

•Insure that all baseline changes are recorded in sufficient detail so the can be reproduced or

backed out; •Insure that all baseline changes are regression tested; •Provide the focal point for

exception resolution.

MODULE OWNERSHIP To insure integrity of modules, each module should have an owner.

Of course, each person usually owns more than one module at a time.

The module owner’s responsibilities are: •Know and understand the module design; •Provide

advice to anyone who works on or interfaces with the module; •Serve as a technical control

point for all module modifica- tions, including both enhancement and repair; •Insure module

integrity by reviewing all changes and conducting periodic regression tests

Module ownership insures design continuity by providing a single focus for all module

changes. Its disadvantages are that it depends on the skill and availability of individuals and it

only provides design control at the detailed level. These dis- advantages can be countered by

using a back-up “buddy” system between module owners and by maintaining an over- all

design responsibility to monitor and control the software structure, interfaces, macros, and

conventions.

THE CHANGE CONTROL BOARD On moderate through large projects, a change control

board (CCB) (sometimes called the Configuration Control Board) is needed to insure every

change is properly considered and coordinated.

The CCB should include some members from development, documentation, test, assurance,

maintenance, and release. The CCB reviews each request for change and approves it,

disapproves it, or requests more information.

Depending on project size, several CCBs may be needed, each with expertise authority over a

specific area. Some examples are: overall design and module interfaces, the con- trol

program, the applications component, user interfaces, and development tools. With multiple

CCBs, a system-level CCS is needed to resolve disputes between these lower-level boards.

A CCB typically needs the following information on each pro- posed change: •Size - How

many new/changed LOC? •Alternatives - How else can it be done? •Complexity - Is the

change within a single component or does it involve others? •Schedule - When? •Impact -

What are future consequences? •Cost - What are potential costs and savings? •Relationship

with other changes - Will another change supersede or invalidate this one, or does it depend

on other changes? •Test - Are there special test requirements? •Resources - Are the needed

people available to do the work? •System impact - What are the memory, performance

•Benefits - What are the expected benefits? •Politics - Are there special considerations such

as who is requesting the change or whom it will affect? •Change maturity - How long has the

change been under consideration?

If the change is to fix a customer-related problem, other infor- mation may be required: •A

definition of the problem the change is intended to fix; •The conditions under which the

problem was observed; •A copy of the trouble report; •A technical description of the

problem; •The names of other programs affected

CCB PROBLEMS Do not waive a review just because change activity has become a

bottleneck. It is precisely at the time of heaviest change and testing activity that loss of

control is most likely and CCB review is most needed.

Select CCB members with care. They have the power to block any part of the project so these

assignments should not be treated lightly. The project’s software development man- ager

should personally chair the highest-level CCB.

THE NEED FOR AUTOMATED TOOLS Without automated tools, changes can easily be

lost or done without proper procedures.

 UNIT -II

Managing Software Quality

1.MANAGING SOFTWARE ORGANISATION

Commitment is the essential foundation for large scale project where many professionals

coordination are involved.commitment is an agreement by one person to do something for

another with a planned completion date and some consideration or payment.

Commitment Discipline

Commitment discipline is the foundation of software project management which focuses on

Ensuring that the organisation meets its commitment which is satisfied by committed people.

 Commitment + Discipline = Success

Making a Commitment :

 The overall mission for a commitment culture is “Keep your Promises”.In Short ,in a

commitment culture each individual actively seeks new commitments ,agree on these,and do

his utmost to fulfil them.We have chosen to use the concept of commitment as the underlying

principle for learning as it gives the student a realistic ,professional and challenging approach

to their future profession.

 Voluntariness

 Agreement

 Infrastructure

 Openness

 Fulfillment

 Renegotiation

The Commitment Hierarchy:

As long as the professionals felt that the commitment are satisfied,the commitments are not

done even the commitments are met by commited individuals.

If the commitment is not met,then the management team takes care in making commitment

and then insists on extraordinary efforts to meet the committed individuals.

The Software commitment process:

The effective software commitment process must reach the top of the organisation.The senior

executive’s personal involvement is what motivates the entire commitment process.

Requirement:

The requirements of the software commitment process are

 All commitment are made by the senior exeutive

 Commitment are made only after the formal review and concurrent process.

 Enforcement mechanism is needed to conduct the review.

Establishing a commitment process:

A commitment process is established by the senior executive who is willing to insist that the

required planning be done before any commitment is made.

Training course is required for the people to know how to make the schedules and estimates

As per the specific estimationg,review and approval procedures,Once the senior executive is

decided to implement, then those items are readily accomplished.

MANAGING SOFTWARE QUALITY

Software product quality is the key measure ofthe software process to evaluate as

softwareorganization.It provides a clear record of development progress,a basis for setting

objectives and a framework for current action.

Basic Quality Principles:

1.Unless aggressive quality goals are established ,nothing will change.

2.If these goals are not numerical ,the quality program will remain just talk.

3.without quality plans,only you are committed to quality.

4.Quality plans are just paper unless plans are tracked and reviewed.

Measurement Criteria

Quality measures fall in to following classes

1. Development

 Defects

 Change activity

 2.Product

 Error Seeding

 Software structure

 Controlled tests

3.Acceptance

 Problem

 Install efoort

4.Usage

 Problems

 Operating efforts

 Surveys

 Availability

5.Repair

 Defects

 Repair effort

Establishing Software Quality program

The steps that are needed to establish a software quality program are listed as follows

1.Senior management establishes aggressive and explicit numerical quality

goals.Without numerical measures,the quality effort will be just another motivational

program with little lasting impsct.

2. The quality measures used are objective ,requiring a minimum of human

judgement.

3.These measures are precisely defined and documented so computer programs can be

written to gather and process them.

4.A quality plan is produced at the beginning of each project.This plan commits to

specific numerical targets and it is update at every significant project change and

milestone.

5.These plans are reviewed for compliance with management quality goals.

6.Quality performance is tracked and published.

7.Since no single measures can adequately represent a complex product,the quality

measures are treated as indicators of overall performance.

Estimating Software Quality

The following factors are considered to estimate the software quality

1.Customer installation rate for the product

2.Product release history

3.Distribution plan

Removal Efficiency

 Removal efficiency is used to calculate the overall efficiency of the development process

which indicates the cumulative percent of the previously injected errors that have been

removed by the end of each project phase.Since defect removal costs can be expected to

roughly double with each project phase,attention should be focused on early removal.

Quality goals

Senior management in every organisation must establish its own quality goals and clearly

state the goals to the people.A reasonable starting point would be:

1.Every new product or product release must have better quality than its predecesoor.

2.The corporate quality organisation,with the assistance of the software groups, will establish

the quality measures to be used.

3.Each product manager is responsible for producing a documented quality plan to meet these

goals.

4.Product quality performance will be judged by:

The degree to which quality plan shows improvement

The effectiveness of the action plans to address areas of deficient performance

Quality plans

The quality plan documents

1.The quality actions management intends to implement

2.The deviations of the quality measures.

3.The identifications of the planned process changes.

4.The anticipated quality improvements.

Software Quaity Assurance Management

 The aim of Software Quality Management (SQM) is to manage the quality of

software and of its development process.

 A quality product is one which meets its requirements and satisfies the user

 A quality culture is an organizational environment where quality is viewed as

everyone's responsibility.

Software Quality Plan (SQP) layer

A project level quality plan written by each project for declaring project commitment to

follow an applicable set of standards, regulations, procedures and tools during the

development lifecycle. In addition, SQP should contain quality goals to be achieved,

expected risks and risk management. SQP sources are derived from

 SQA components that are adopted as is or customized to the project's needs

 New procedures, standards and tools complementing missing or not-applicable SQA

components that have been written in particular for the project, or imported from

outside the organization.

Any deviation of an SQP from SQA should be justified by the project manager and be

confirmed by the company management.

Software Quality Control (SQC) layer

Ensures in-process that both SQA and SQP are being followed by the development teams.

SQC activities include

 Mentoring how to produce artifacts, such as well-defined engineering documents

using standard templates

 Mentoring how to conduct standard processes, such as quality reviews

 Perform in-process quality reviews to verify, evaluate and confirm artifacts

 Verify and evaluate to improve the use of methods, procedures and adopted software

tools

SQM Roles

 to ensure that the required level of quality is achieved in a software product

 to encourage a company-wide "Quality Culture" where quality is viewed as

everyone's responsibility

 to reduce the learning curve and help with continuity in case team members change

positions within the organization

 to enable in-process fault avoidance and fault prevention through proper development

Many people use the terms SQM and SQA (Software quality assurance) interchangeably.

http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Software_quality
http://en.wikipedia.org/wiki/Software_quality_assurance

Software quality management

Software quality management can be realized in various ways depending on organization and

type of realized project,
[2]

 but it should support whole software development lifecycle,

meaning:

 Collecting requirements and defining scope of IT project, focused on verification if

defined requirements will be testable. One of the products can be test strategy.

 Designing the solution, focused on planning test process e.g. what type of tests will be

performed, how they will be performed in context of test environments and test data.

One of the products can be test plan including test schedule.

 Solution implementation supported by creating test cases and scenarios, executing

them and registering defects including coordination of fixing them. Products can be

test cases and scenarios, reports from test iteration realization.

 Change management, supported by verification how planned changes can influence

the quality of created solution and eventual change of test plan. One of the products

can be changes in test plan, test cases and scenarios.

 Closing project, supported by realization number of tests focused on complex

verification of overall quality of created solution. It can include System Integration

Tests, User Acceptance Tests and Operational Acceptance Tests. One of the products

can be recommendation about production start of the system.
[3]

http://en.wikipedia.org/wiki/Software_quality_management#cite_note-2
http://en.wikipedia.org/wiki/Application_lifecycle_management
http://en.wikipedia.org/wiki/Software_quality_management#cite_note-3

UNIT-III

SOFTWARE QUALITY ASSURANCE METRICS

Total Quality Management

What is Total Quality Management?

TQM is a management philosophy, a paradigm, a continuous improvement approach

to doing business through a new management model. The TQM philosophy evolved

from the continuous improvement philosophy with a focus on quality as the main

dimension of business. Under TQM, emphasizing the quality of the product or

service predominates. TQM expands beyond statistical process control to embrace a

wider scope of management activities of how we manage people and organizations

by focusing on the entire process, not just simple measurements.

TQM is a comprehensive management system which:

 Focuses on meeting owners’/customers’ needs by providing quality services at a

cost that provides value to the owners/customers

 Is driven by the quest for continuous improvement in all operations

 Recognizes that everyone in the organization has owners/customers who are

either internal or external

 Views an organization as an internal system with a common aim rather than as

individual departments acting to maximize their own performances

 Focuses on the way tasks are accomplished rather than simply what tasks are

accomplished

 Emphasizes teamwork and a high level of participation by all employees

TQM beliefs

Presented here are universal total quality management beliefs.

 Owner/customer satisfaction is the measure of quality

 Everyone has owners/customers; everyone is an owner/customer

 Quality improvement must be continuous

 Analyzing the processes used to create products and services is key to quality

improvement

 Measurement, a skilled use of analytical tools, and employee involvement are

critical sources of quality improvement ideas and innovations

 Sustained total quality management is not possible without active, visible,

consistent, and enabling leadership by managers at all levels

 If we do not continuously improve the quality of products and services that we

provide our owners/customers, someone else will

Characteristics of Successful TQM Companies

The construction industry has arrived late to TQM, probably due to the tendency to

easily brush aside anything in management that is new, or to dismiss TQM as a fad.

Continuous improvement is not a fad but a necessary part of management’s

obligation to properly run its company. Gone are the boom days when quality did

not matter due to the volume of work available and the ease of obtaining work. The

attitude of construction managers and contractors was simply to add it to the bill,

because the owner will pay for it. In other words, in those boom days Cost plus

Profit equaled Price. Now, however, the new attitude is Price minus Cost equals

Profit. Owners are now demanding higher quality work, and at a lower cost. In

attempting to keep pace with the new attitude, a quality management system that

helps keep costs down is well worth implementing.

The characteristics that are common to companies that successfully implement TQM

in their daily operations are listed here.

 Strive for owner/customer satisfaction and employee satisfaction

 Strive for accident-free jobsites

 Recognize that the owner/customer provides the revenue while the employees

are responsible for the profit

 Recognize the need for measurement and fact-based decision making

 Arrange for employees to become involved in helping the company improve

 Train extensively

 Work hard at improving communication inside and outside the company

 Use teams of employees to improve processes

 Place a strong emphasis on the right kind of leadership, and provide supervisors

with a significant amount of leadership training

 Involve subcontractors and suppliers, requiring them to adopt TQM

 Strive for continuous improvement

Quality principles that successful TQM companies recognize

The quality principles that successful TQM companies recognize and attempt to

continually incorporate into their actions are the following:

 People will produce quality goods and services when the meaning of quality is

expressed daily in their relations with their work, colleagues, and organization.

 Inspection of the process is as important as inspection of the product. Quality

improvement can be achieved by the workers closest to the process.

 Each system with a certain degree of complexity has a probability of variation,

which can be understood by scientific methods.

 Workers work in the system to improve the system; managers work on the

system to improve the system.

 Total quality management is a strategic choice made by top management, and

must be consistently translated into guidelines provided to the whole

organization.

 Envision what you desire to be as an organization, but start working from where

you actually are.

 Studies have indicated that people like working on a quality-managed jobsite

especially due to the cleaner site and safer place to work.

 Accept the responsibility for quality. Establish datums for measurement.

 Use the principle of get it right, the first time, every time.

 Understand that quality is a journey, not a destination. It consists of steps that

form a process that is continuous.

Quality improvement team tasks are . . .

Quality improvement teams are active in the following task areas:

 Identify the customers of the process

 Determine customer expectations

 Flowchart the process

 Identify all of the inputs and interfaces

 Identify the output(s)

 Systematically review the procedures currently being used in the process

 Collect and analyze available quantitative data

 Determine the need for additional data

 Identify the problem(s)

 Determine the root cause of the problem

 Determine potential solutions

 Select a trial solution

 Present recommendations to the steering committee

 Implement the solution on a pilot-project basis

 Analyze the data to discern if there has been improvement

 The quality improvement team (QIT) is responsible for planning and managing

the TQM implementation process for the organization. The QIT is responsible

for making TQM happen.

 The QIT must take the lead in managing the cultural changes that TQM will

require.

 At least one member of the Senior Management Team (SMT) should be a

member of the QIT.

 The QIT reports to the Chief Executive Officer (CEO) and the SMT.

 The QIT and SMT should hold a joint meeting to review the TQM effort at least

quarterly.

Quality improvement team structure is . . .

A quality improvement team (QIT) meets on a regular basis. During the first

months of the TQM effort, the QIT will probably wish to meet once per week for 3

to 5 hours. In addition, QIT members will spend an additional 6 to 10 hours per

week on training, education, and QIT assignments. After the TQM implementation

plan is complete and underway, the QIT should meet once or twice per month.

The QIT determines and defines the duties of each QIT member. Typical positions

for members are TQM Director or Coordinator; Communications, Education, and

Training Coordinator; Quality Measurement; Customer Satisfaction; and Employee

Involvement and Satisfaction. The types of quality improvement teams are

permanent, temporary, preparation, planning, and implementation. Facilitators hold

an extremely important role in the success of implementation.

In the order presented here, the QIT plans the ongoing TQM education for: (1) QIT

and SMT members, (2) facilitators and supervisors, and (3) all employees.

The QIT reviews, approves and helps implement quality improvement plans,

establishes the TQM organizational structure and team structure for the company,

procures (from management) and manages the resources required for TQM

implementation, solicits and evaluates Quality Improvement Opportunities (QIOs),

selects and commissions teams to work on QIOs, and proffers rewards and

recognition.

The permanent teams of the quality improvement process are based on the following

areas of concern:

 Key Objective Teams

 Customer Satisfaction

 Employee

Morale/Satisfaction

 Stakeholder Relationships

 Functional Area QI Teams

 Employee Involvement Teams

 Natural Work Teams

The temporary teams of the quality improvement process are:

 Task Force QITs Project Quality Teams

The facilitators of the quality improvement process should retain the following

characteristics:

Qualities of a good facilitator: Roles and duties

Is respected by people at all levels of the

organization

Is organized

Is a good listener and communicator

Understands TQM principles and philosophies

Is objective and open-minded

Is a team player, one who likes to accomplish

things through others

Organizes team meetings

Keeps meetings on track

Is record keeper

Procures needed resources and outside support

Communicates progress to QIT

SOFTWARE QUALTIY METRICS

A definition of software quality metrics is:-

A measure of some property of a piece of software or its specifications.

Basically, as applied to the software product, a software metric measures (or quantifies) a

characteristic of the software.

Some common software metrics (discussed later) are:-

 Source lines of code.

 Cyclomatic complexity, is used to measure code complexity.

 Function point analysis (FPA), is used to measure the size (functions) of software.

 Bugs per lines of code.

 Code coverage, measures the code lines that are executed for a given set of software

tests.

 Cohesion, measures how well the source code in a given module work together to

provide a single function.

 Coupling, measures how well two software components are data related, i.e. how

independent they are.

The above list is only a small set of software metrics, the important points to note are:-

 They are all measurable, that is they can be quantified.

 They are all related to one or more software quality characteristics.

The last point, related to software characteristics, is important for software process

improvement. Metrics, for both process and software, tell us to what extent a desired

characteristic is present in our processes or our software systems. Maintainability is a

desired characteristic of a software component and is referenced in all the main software

quality models (including the ISO 9126). One good measure of maintainability would be time

required to fix a fault. This gives us a handle on maintainability but another measure that

would relate more to the cause of poor maintainability would be code complexity. A method

for measuring code complexity was developed by Thomas McCabe and with this method a

quantitative assessment of any piece of code can be made. Code complexity can be specified

and can be known by measurement, whereas time to repair can only be measured after the

software is in support. Both time to repair and code complexity are software metrics and can

both be applied to software process improvement.

From our previous definition of SQA and SQC, we now see the importance of measurement

http://en.wikipedia.org/wiki/Cyclomatic_complexity
http://www.sqa.net/softwarequalitycontrol.html

(metrics) for the SDLC and SPI. It is metrics that indicate the value of the standards,

processes, and procedures that SQA assures are being implemented correctly within a

software project. SQA also collectsrelevant software metrics to provide input into a SPI (such

as a CMMi continuous improvement initiative). This exercise of constantly measuring the

outcome, then looking for a causal relationship to standards, procedures and processes makes

SQA and SPI pragmatic disciplines.

The whole process of setting up a SDLC, then selecting the correct metrics and then

establishing causal relationships to parts of the SDLC is more of an art than a science. It is

for this reason that there a few, if any, off the shelf answers to SQA, SQC and SPI. It is a

question of where are the risks and challenges of a given environment. For example if you

have one version of a system and this runs on a central server, then configuration issues are

unlikely and you are less likely to be concerned with Portability issues than someone who

targets multiple platform, multiple versions is concerned with portability (and configuration

management).

That said the following section tries to pull the ideas of quality metrics, quality

characteristics, SPI, SQC and SQA together with some examples by way of clarifying the

definition of these terms.

The Software Assurance Technology Center (SATC), NASA, Software Quality Model

includes Metrics

The table below cross references Goals, Attributes (software characteristics) and Metrics.

This table is taken from the Software Assurance Technology Center (SATC) at NASA.

Although the software quality model has different quality characteristics than those

previously discussed on this website, namely ISO 9126, the relationship with Goals lends

itself to giving examples of how this could be used in CMMi. If you look at the other quality

models they have a focus on what comes under the Product (Code) Quality goal of the SATC

model.

The SATC model of documenting metrics is useful for implementing the CMMi SPI for these

reasons:-

 The SATC model includes goals for processes, (i.e. Requirements, Implementation

and Testing).

 The SATC model can be used to reference all of the CMMi software engineering

process areas, for example Requirements management (which includes traceability).

 If desired the SATC model can be expanded to accommadate grater risk mitigation in

the specified goal areas, or other goal areas can be created.

 Demonstrating the relationship of metrics to quality characteristics and SPI (CMMI)

is well served by the SATC quality model.

http://www.sqa.net/iso9126.html

The SATC Software Quality Model (which includes Goals and Metrics as well as the

software attributes)

GOALS ATTRIBUTES METRICS

 Ambiguity
Number of Weak Phrases. Number of

Optional Phrases.

 Completeness
Number of To Be Determined (TBDs) and

To be Added (TBAs).

Requirements

Quality
Understandability Document Structure. Readability Index.

 Volatility
Count of Changes / Count of Requirements.

Life cycle stage when the change is made.

 Traceability

Number of software requirements not traced

to system requirements. Number of software

requirements not traced to code and tests.

 Structure/Architecture Logic complexity. GOTO usage. Size.

 Maintainability Correlation of complexity/size.

Product (Code)

Quality
Reusability Correlation of complexity/size.

Internal

Documentation
Comment Percentage.

External

Documentation
Readability Index.

Implementation

Effectivity
Resource Usage Staff hours spent on life cycle activities.

 Completion Rates
Task completions. Planned task

completions.

Testing Effectivity
Correctness

Errors and criticality. Time of finding of

errors. Time of error fixes. Code Location of

fault.

SATC's relationship with CMMi

The SATC Goals can be mapped to the following CMMi development processes:-

GOALS CMMi process.

Requirements Quality Requirements Development, Requirements Management.

Product (Code) Quality Technical Solution

Implementation Effectivity Project Management.

Testing Effectivity Verification and Validation.

UNIT IV

SOFTWARE QUALITY PROGRAM

Software Quality program concepts

SQP stands for software quality program.Software quality program is a framework for

building quality in to the software and for the actions necessary to verify that the required

functionality and performance have been achieved.

 The software quality program is more than “traditional” quality assurance.It goes beyond

what is normally performed by “traditional” quality assurance functions and defines the

enterprise-wide actions necessary for achieving quality in software development such as,

 Establishing the quality requirements for the software product

 Defining,implementing and evaluating processes and methodologies for the

development,operationand maintenance of the software.

 Defining and using productivity,process quality and product quality measures

 Defining documentation requirements for the software

 Performing evaluations of the software development processes and products.

 Planning,implementing and managing a software quality program.

Objective

The objective of the software quality program is to assure the quality of

 Deliverable software and its documentation.

 The processes used to produce deliverable software and

 Non deliverable software

Responsibility for the Software quality program

Contractor personnel responsible for ensuring compliance with the software quality program

requirements shall have the resources,responsibility,authority and organizational freedom to

permit objective evaluations and to initiate and verify corrective actions.

The persons conducting the evaluation of a product or activity shall not be the persons who

developed the product,performed the activity,or responsible for the product or activity.This

does not preclude members of the development team from participating in these

evaluations.The contractor shall assign responsibility for the fulfilment of and for ensuring

compliance with the software quality program requirements .

Documentation for the Software Quality Program

The software quality program,including procedures,processesand products shall be

documented in contractor format and shallprovide implementing instructions for each of the

requirements in standard.The software quality program is subject to review by the contracting

agency and may be disapproved by the contracting agencywhenever the program does not

meet the requirements of the contract.

Software Quality program planning

The contractor shall conduct a complete review of the contract to identify and make timely

provision for acquiring or developing the resources and skills required for implementing the

software quality program.The contactor shall prepare the plan for applying the documented

software quality program plan.the contractor shall place the SQPP under configuration

control prior to implementation.

Software quality program procedures ,tools and records

Procedures used by SQP are as follows

 Product reviews

 In-process reviews

 Management review

 Process audit

 Code walkthrough

 Static code analysis

 FEMA

Software quality program implementation

 The contractor shall implement the software quality program in accordance with the SQPP

and shall adhere to the program for the duration of the contract.The software quality program

shall be fully integrated with the activities required by the contract.

ESTABLISHMENT OF SOFTWARE QUALITY PROGRAM

Tasks:

Swift and accurate collection of data.

Develop a plan for quality

Scope:

The requirements to establish and implement the software quality program must be defined

and made public knowledge are listed below

 Planning for and conducting assessments of the quality of the software

 Planning for and conducting assessments of the quality of the documentation.

 Planning for and conducting assessments of the quality of workmanship of all the

contractors for the software

 Planning for and conducting assessments of the quality of all work whish will need to

be performed for the on-going maintenance of the software.

 All deliverable and non deliverable items which are to be developed aspart of the

project need to be clearly identified and labelled.

 System boundaries need ot be clearly defined.

Minimal Quality Assurance Effort

The following things must be done when a minimum investment quality plan is

produced.

 Something is better than nothing

 Concentrate efforts for greatest effect

 Most major system failures have been caused by interface problems.

 Early error control

 Search for critical / risky fuctions

 Encourage developer’s cooperation.

Quality Plan

 A Quality plan helps you schedule all of the tasks needed to make surethat your

project meets the need of your customer.

It comprises 2 parts

Quality Assurance Plan

Quality control plan

Purpose:

 Define the techniques,procedures and methodologies that will be used to assure timely

delivery of the software and that the development system meets the specified requirements

within project resources

Barriers:

 The barriers prevent top management from understanding and implementing constant

improvements in quality and productivity in all areas of their organisation are as follows

 Top management must understand the direct relationship of improved quality to

productivity and from there to lowering of costs and expenses.

 Top management must understand that its controls the system and subsystemsthat

determine the performance of the people in the organisation.

 Implementation of a quality program is dependent upon the management of the

organisation.

Technical definition

 Consist of the following 3 parts

1.Requirements

2.Confidence

3.Constant improvement

Software Quality Assurance Planning

Scope and intent of Software Quality Assurance (SQA) activities

The SQA team’s objective is to ensure that the product does not deviate far from

the original design specifications. If it is discovered that deviation has occurred,

the SQA team will notify the development team to prevent future deviations and

to correct the previous deviations. Also, the SQA team will perform a

walkthrough to analyze the product’s quality at any particular stage of

development. Error detection and possible enhancements are also expressed to

the development team.

SQA organizational role

The SQA organizational role is to review the product(s) at specific times during

product implementation. Upon reviewing, the SQA team’s duties will be to

evaluate the software at its current development stage and recognize any defects

in the subsequent stage (design or implementation). The SQA team will directly

interact with the software engineering team in group discussions, discussing any

errors or possible enhancements that have been identified. In addition, the SQA

team will ensure that the software engineering team has not deviated in any way

from the initial design specifications.

SQA Tasks

Task Overview

Description of SQA Task 1

The Engine Software Engineer will check with the Requirements

Specification on a weekly basis to make sure that what he is coding

conforms to the original design. This process will ensure that the product

meets the client’s expectations and standards and that the engine, up to its

current point, is working properly.

.

Work products and documentation for Task 1

As a result of Task 1, any major deviations that occur will be expressed to

the other group members and documented on a separate defect log.

Documentation will ensure that each group member is aware of the

change(s) made to the engine so that each part of the project can be

adjusted accordingly.

.

Description of SQA Task 2

The User-Interface Software Engineer will check with the Requirements

Specification on a weekly basis to make sure that what he is coding

conforms to the original design. This process will ensure that the product

meets the client’s expectations and standards and that the user-interface,

up to its current point, is working properly.

Work products and documentation for Task 2

As a result of Task 2, any major deviations that occur will be expressed to

the other group members and documented on a separate defect log.

Documentation will ensure that each group member is aware of the

change(s) made to the interface, so that each part of the project can be

adjusted accordingly.

Description of SQA Task 3

Each member of the group will routinely perform a hands-on evaluation of

the user-interface. Noted evaluation criteria will be: ease of use, principle

of least astonishment, unobtrusiveness, and overall attractiveness. This is

done to ensure that the user-interface is evaluated honestly, and remains

easily understandable and attractive.

Work products and documentation for Task 3

As a result of Task 3, all suggestions or concerns are expressed to the

User-Interface Engineer. These are recorded in the defect log. Based on

these concerns, the User-Interface Engineer takes note and makes the

appropriate adjustments to the user-interface to make sure that the final

product is satisfactory.

Description of SQA Task 4

Each member of the group will routinely perform a hands-on evaluation of

the DirectX engine. Noted evaluation points will be: any logic errors

and/or software glitches that occur, and any desired enhancements. This is

done to ensure that the DirectX engine is evaluated honestly, and that it is

defect free, sufficiently powerful, and efficient.

Work products and documentation for Task 4

As a result of Task 4, all suggestions or concerns are expressed to the

Engine Software Engineer. These are recorded in the defect log. Based

on these concerns the Engine Software Engineer takes note and makes the

appropriate adjustments to the DirectX engine to make sure that the final

product is satisfactory.

Description of SQA Task 5

An SQA leader will be appointed to (1) control the frequent SQA reviews;

(2) keep track of all SQA meetings; and (3) manage the flow of

information to the correct software engineer. In addition, the SQA leader

will review each product defect or enhancement that has been reported,

then assign a priority rank to each. The higher the priority rank, the more

important it is to fix the defect or enhancement. Priority ranking will be

determined by a group discussion, involving the software engineers, and

headed by the SQA leader.

Work products and documentation for Task 5

As a result of Task 5, all suggestions or concerns expressed during each

evaluation will be recorded. In addition, each recorded item will be

assigned a priority ranking and the date the item was reviewed. All

requests for defect fixes and enhancement implementations will be

recorded.

Standards, Practices and Conventions (SPC)

Every software engineer’s work will be evaluated weekly to ensure that the

project is continuing smoothly and on schedule. Upon review, the current

prototype will also be checked to determine if the software engineer is deviating

from the original specification.

Unscheduled reviews of every software engineer’s work will be conducted to

ensure that each subsystem is given ample attention during implementation. By

making unscheduled evaluations, it can be determined whether the software

engineer is allocating enough time for each subsystem or if the work is being

rushed without attention to detail.

All software engineers are responsible for submitting any major design changes or

implementation variances to the SQA leader. This procedure will account for all

impacts on the rest of the software resulting from the change(s). Every major

change will be recorded by the SQA leader, including which software engineer

requested the change and the date requested.

All software engineers are expected to thoroughly test each completed subsystem

of the software following guidelines outlined in the Test Specification. This is to

ensure that each subsystem is working properly and efficiently. Any major defect

found will be reported to the SQA leader.

SQA Resources

An SQA leader will be assigned to control the flow of information from the SQA

team to the software engineers. The SQA leader will oversee the software quality

control to ensure that the software engineers are conforming to the standards of

the Requirements Specification document. Furthermore, the SQA leader will

have the duty of assigning a relative rank of priority to every defect reported -

functional or cosmetic. The priority will be used to determine which defects or

enhancements are deemed the most important for the software engineers to

correct first. Every defect or enhancement request is submitted to the SQA leader

for review. The SQA leader will be in control of all SQA activities including

SQA meetings and reviews.

Because software engineers are most familiar with implementation of their

particular part of the software, each software engineer will perform software

quality analyses. Before and after each subsystem is complete, the software

engineer will review the Requirements Specification document to ensure that the

subsystem is implemented within the bounds of the original design.

Each team member will actively and frequently test the current prototype of the

software for possible defects or necessary enhancements. This ensures that each

subsystem of the software is functioning properly and follows the Requirements

Specification document. Completely debugging one’s own source code can be

difficult; therefore, each team member will be responsible for checking every

major iteration of the software prototype to ensure that many or most defects are

intercepted in early programming stages.

No special software or hardware will be needed to conduct the software quality

assurance walkthroughs. It may, however, be helpful for each group member to

have access to a central defect-report database, which will be reviewed and

updated frequently. Although this is not necessary, it will be helpful in keeping

software defects and enhancements organized and easily accessible to every group

member for review.

.

Roles and Responsibilities

The SQA leader will oversee any formal technical reviews. Any defects

or enhancements will be discussed and recorded by the SQA leader. Each

defect or enhancement will be given a priority rank, which will be

recorded. Once the review is complete, the SQA leader will make a

summary of each defect or enhancement and distribute them to the

appropriate software engineer.

Each software engineer will be responsible for reviewing his own software

module during module creation and upon module completion. Once each

major software module is complete, it is the software engineer’s duty to

inform the SQA leader that the module is ready for review.

Review work products

The SQA leader will keep a defect log. The defect log contains all defects

and enhancements, as well as a priority rank for each. The following will

also be noted in the defect log: (1) whether or not the defect or

enhancement has been handled, (2) which software engineer oversaw the

correction, and (3) what date the correction was completed.

Formal Technical Reviews

Description of System Specification review

Description of focus of the System Specification review

The System Specification Review will provide a forum to analyze

the proposed design of the software. To determine any obvious

design flaws, the focus of this review will be to analyze the major

software functions outlined in the System Specification. Once a

design defect has been recognized, the SQA team will discuss with

the software engineers any ideas or suggestions on how to

compensate for the design flaw.

Timing of the review

The System Specification Review will be held upon completion of

the System Specification. This should occur within the first few

weeks of the software’s development. This is necessary so that the

underlying design of the software is sound and will not create any

serious problems for the software engineers in the future.

Work products produced

The SQA leader will create a summary report of the System

Specification Review. The summary report will include any

changes to the software’s major subsystem design. Once

subsystem design defects have been identified, the SQA team will

discuss possible solutions with the software engineers. Each

possible solution will be noted and reviewed to determine if the

solution will have an impact on the rest of the design. Once all

obvious design defects have been handled, the System

Specification will be amended to account for the design changes.

Review checklist

- Is the proposed design the best possible solution?

- Is there a better way to break up the software into subsystems?

If yes, how?

- Is there any obvious design flaws that have not been accounted

for? If yes, what?

- Are there any necessary enhancements for the software?

- Is the proposed System Specification within the time frame?

- Is each subsystem possible to implement in languages of

choice?

SQA Tools, Techniques, Methods

All SQA activities will follow the same guidelines and methods. Every SQA meeting

will include every group member. Every group member is expected to participate in the

discussion. Any group member not attending the review will be notified by the SQA

leader of what took place at the review. The SQA leader will oversee the discussion and

will take notes of any defects or enhancements that need to be analyzed.

The SQA team will analyze the defects or enhancements and determine their complexity,

impact on the system, and priority. Once prioritized, the SQA leader will assign each

item to the software engineers along with their priority.

After a defect has been eliminated or an enhancement added, the software engineer will

inform the SQA leader at the next SQA review. The SQA leader will take note of the

correction.

No special tools will be necessary for SQA although access to a central database that all

group members can access would be helpful to cut down time and duplication of error.

Factors affecting Intensity of SQA Activities

• SQA Activities are linked to the completion of a project phase

– Requirements, design, etc.

• The SQA activities need to be integrated into the development plan that implements

one or more software development models, such as the waterfall, prototyping, spiral,

…

• They need to be activities just like other more traditional activities – be entered in

plan, scheduled, etc.

• SQA planners need to determine

– A list of SQA activities needed for the project

– And then for each activity, they need to decide on

• Timing

• Type of QA activity to be applied (there are several)

• Who performs the activity and resources required.

• Important to note that many participate in SQA activities

• Development team

• Department staff members

• Independent bodies

• Resources required for the removal of defects and introduction of

changes.

• Sad testimony that few want to allocate the necessary time for SQA activities.

– This means time for SQA activities and then time for subsequent removal of

defects.

– Often, there is no time for follow-on work!!

• Activities are not simply cranked in and absorbed!

• So, time for SQA activities and defect correction actions needs to be examined.

• Project Factors

– Magnitude of the project – how big is it?

– Technical complexity and difficulty Discuss

– Extent of reusable software components – a real factor

– Severity of failure outcomes if project fails – essential!

• Team Factors

– Professional qualifications of the team members

– Team acquaintance w/ project and experience in the area

– Availability of staff members who can professionally support the team, and

– Percentage of new staff members in the team.

UNIT – V

SOFTWARE QUALITY ASSURANCE STANDARDIZATION

